Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED

Graphical Abstract

Highlights

- LCP phase conversion enables the study of LCP-embedded crystals by MicroED
- Lipase hydrolysis can liberate crystals from LCP for MicroED studies
- LCP-MicroED opens a path for structure studies of membrane protein microcrystals

Authors

Lan Zhu, Guanhong Bu, Liang Jing, ..., Tamir Gonen, Wei Liu, Brent L. Nannenga

Correspondence

w.liu@asu.edu (W.L.), brent.nannenga@asu.edu (B.L.N.)

In Brief

Zhu et al. demonstrate modified microcrystal electron diffraction (MicroED) and lipidic cubic phase (LCP) sample preparation procedures, which can be used to facilitate MicroED analysis of LCP-embedded microcrystals. These results set the stage for the use of MicroED to analyze microcrystals that have been crystallized within LCP.
Resource

Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED

Lan Zhu,1,2 Guanhong Bu,1,3 Liang Jing,1,2 Dan Shi,4 Ming-Yue Lee,1,2 Tamir Gonen,5,6 Wei Liu,1,2,* and Brent L. Nannenga1,3,7,*

1Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
2School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
3School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
4Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
5Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
6Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
7Lead Contact
*Correspondence: w.liu@asu.edu (W.L.), brent.nannenga@asu.edu (B.L.N.)
https://doi.org/10.1016/j.str.2020.07.006

SUMMARY

The lipidic cubic phase (LCP) technique has proved to facilitate the growth of high-quality crystals that are otherwise difficult to grow by other methods. However, the crystal size optimization process could be time and resource consuming, if it ever happens. Therefore, improved techniques for structure determination using these small crystals is an important strategy in diffraction technology development. Microcrystal electron diffraction (MicroED) is a technique that uses a cryo-transmission electron microscopy to collect electron diffraction data and determine high-resolution structures from very thin micro- and nanocrystals. In this work, we have used modified LCP and MicroED protocols to analyze crystals embedded in LCP converted by 2-methyl-2,4-pentanediol or lipase, including Proteinase K crystals grown in solution, cholesterol crystals, and human adenosine A2A receptor crystals grown in LCP. These results set the stage for the use of MicroED to analyze microcrystalline samples grown in LCP, especially for those highly challenging membrane protein targets.

INTRODUCTION

Structural determination of membrane proteins has been difficult primarily due to their low expression and low stability once isolated from their native membrane environment. Despite these difficulties, the number of membrane protein crystal structures has increased in recent years due to multiple technical breakthroughs, including the lipidic cubic phase (LCP) technique, which provides a lipid environment close to that of the native membrane protein environment. Since the first high-resolution bacteriorhodopsin structure from LCP was determined in 1997 (Landau and Rosenbusch, 1996; Pebay-Peyroula et al., 1997), there are now over 120 unique membrane protein structures, covering a wide range of molecular sizes even to the bigger and bulkier proteins, resolved at atomic resolution from crystals formed in meso (Aherne et al., 2012; Al-Sahouri et al., 2018; Caffrey, 2008; Caffrey et al., 2012; Cherezov et al., 2006; El Ghachi et al., 2018; Huang et al., 2015, 2018; Ishchenko et al., 2017a, 2017b; Jaeger et al., 2019; Johansson et al., 2017; Lan et al., 2018; Li and Caffrey, 2011; Li et al., 2015; Ma et al., 2017; Vogely et al., 2016; Weinert et al., 2017, 2019; Winkler et al., 2019; Xiang et al., 2016; Zabara et al., 2018). However, one challenge with this technique is that when membrane proteins crystallize in LCP, the crystals are often very small microcrystals in the initial condition that cannot withstand the radiation damage during synchrotron X-ray diffraction data collection, and the crystal size optimization may take months to years without assurances of improved diffraction quality. Serial femtosecond crystallography (SFX), which utilizes high-brilliance and ultra-fast X-ray pulses to capture single-crystal diffraction patterns from LCP-embedded membrane protein microcrystals before they are destructed, has recently been employed with great success (Al-Sahouri et al., 2018; Caffrey et al., 2014; Johansson et al., 2017; Liu et al., 2013; Nogly et al., 2018; Stauch and Cherezov, 2018; Weierstall et al., 2014). Nevertheless, the LCP-SFX technique is very time and resource intensive with limited experimental time because there are only six operational X-ray free electron laser facilities worldwide, currently. LCP serial crystallography technology has been successfully adapted for use with synchrotron radiation, with both monochromatic and
Although this evolution provides exciting opportunities for structure determination from microcrystals, further developments are required to overcome existing hurdles. Moreover, serial crystallography methods require a very large number (in our experience, typically greater than 100,000) of microcrystal diffraction patterns to constitute a complete dataset for structure determination. Therefore, to improve the structural studies of important integral membrane proteins to resolve high-resolution details in a more high-throughput fashion, new methods for structure determination need to be developed for the small crystals grown in LCP.

The advent of a new technique, microcrystal electron diffraction (MicroED) in 2013, offers an alternative for the structure determination of proteins from microcrystal samples (Shi et al., 2013). MicroED is a method that is used to collect electron diffraction patterns from sub-micrometer sized three-dimensional crystals in the electron microscope (EM) (Nannenga and Gonen, 2018). Microcrystals are deposited on EM sample grids followed by sample blotting, because electrons cannot penetrate thick samples. To ensure the sample remains hydrated in the vacuum of the EM and to reduce radiation damage, the samples are vitrified and kept at cryogenic temperatures. The continuous-rotation data collection strategy for MicroED allows multiple diffraction patterns to be recorded from one single crystal with an extremely low electron dose, resulting in a series of diffraction patterns that can be indexed, integrated, and processed with crystallographic data processing software without any prior knowledge of unit cell parameters or geometry (Nannenga et al., 2014). Since the initial implementation of MicroED, there have been further efforts to improve this method to determine structures of proteins, peptides, and small organic molecules (Gemmi et al., 2019; Gruene et al., 2018; Jones et al., 2018; Levine et al., 2020; Nannenga and Gonen, 2016, 2019).

In this work, our goal is to combine MicroED with LCP microcrystallography methods (LCP-MicroED) to determine structures from microcrystals within the LCP matrix. Here, we report the first MicroED structures of a model soluble protein, Proteinase K, that has been embedded in LCP. In addition, we have demonstrated the approach is suitable for generating MicroED samples for crystals grown within LCP by collecting cholesterol MicroED datasets and diffraction patterns of a model G protein-coupled receptor (GPCR), human adenosine A2A receptor (A2AAR).

Proteinase K had been used extensively as a model protein to generate samples for both MicroED and new LCP-based serial crystallography method (de la Cruz et al., 2017; Hattne et al., 2018; Martin-Garcia et al., 2017, 2019; Martynowycz et al., 2019a). Cholesterol crystals grown in LCP were used to elucidate the structure determination of small molecules by MicroED. A2AAR was chosen as a model GPCR crystallized in LCP using previously published conditions that resulted in a high-resolution SFX structure as well as the structures determined by serial crystallography studies at synchrotrons (Batyuk et al., 2016; Martin-Garcia et al., 2017, 2019). By treating the LCP samples with different reagents to lower the viscosity of the LCP, we further optimized two strategies: dilution using MPD and treatment of the sample with lipase, which led to high-quality MicroED samples. Both strategies were used on the LCP-Proteinase K samples to successfully determine the structure of Proteinase K at 2.0 Å resolution using MicroED. Diffraction datasets collected from MPD-treated cholesterol crystals and A2AAR crystals diffraction to ~1 Å and 4.5 Å, respectively. Cholesterol diffraction data were processed, with unit cell parameters matching previously known cholesterol crystals (Varsano et al., 2018), and maps from the low-completeness datasets were generated. We also observed that the A2AAR diffraction pattern is consistent with previously published results (Batyuk et al., 2016; Martin-Garcia et al., 2017, 2019).

RESULTS

Although LCP crystallization has achieved significant success in the structure determination of membrane proteins, due to the intrinsic high viscosity of the LCP matrix (Caffrey and Cherezov, 2009), this technique is not well suited to standard MicroED sample preparation protocols. In order to identify sample preparation conditions and protocols that would allow MicroED to be used on samples embedded in LCP, we chose the well-studied model proteins, Proteinase K and A2AAR, as well as a small-molecule cholesterol, which have previously been used to benchmark both new LCP-based X-ray diffraction (Batyuk et al., 2016; Martin-Garcia et al., 2019) and MicroED methods (Hattne et al., 2016). Proteinase K microcrystals were grown in a batch and reconstituted into the LCP to be used for further studies on LCP sample preparation for MicroED. As an initial test for crystals that were grown within the LCP matrix rather than embedded after crystal growth, cholesterol was crystallized in LCP, and MicroED data were collected on these crystals. Finally, A2AAR microcrystals were grown in LCP and directly treated for LCP-MicroED sample preparation, and single diffraction patterns were collected.

LCP Sample Conversions for EM Grid Deposition

We initially focused on the identification and optimization of sample preparation conditions that would allow the collection of MicroED data from crystals embedded or grown in LCP. Because the viscosity of the LCP matrix is too high to be directly deposited on EM grids and effectively blotted thin enough to be penetrated by the electron beam, we adapted two different strategies to reduce the viscosity: (1) by mixing with certain additives to convert into a less viscous liquid analog of cubic phase, which could be a sponge phase (Caffrey, 2015; Qi and Caffrey, 2000); (2) treatment with lipase to hydrolyze matrix lipids and convert LCP into a two-liquid phase system of water/glycerol solution and oleic acid (Nollert and Landau, 1998; Nollert et al., 2002).

First, we screened the following additives at various concentrations: 2-methyl-2,4-pentanediol (MPD), PEG200, PEG400, Jeffamine M600, t-butanol, ethylene glycol, and 1,4-butanediol (Caffrey and Cherezov, 2009; Wadsten et al., 2006). These seven agents are commonly used in traditional protein crystallization screening and cryoprotection solutions. Although previous studies have proposed that a less viscous lipid mesophase might form with the addition of these additives (Liu et al., 2012; Wadsten et al., 2006), the condition of utilizing them to liberate crystals from the LCP matrix was not well defined. Initial tests were conducted with blank LCP by mixing the host lipid monoolein (MO) and Proteinase K precipitant buffer without protein. All
seven additives could convert the blank LCP to a less viscous lipid mesophase in syringe mixing, in the range of 6%–18% with MPD, 24%–40% with PEG200, 32%–48% with PEG400, 9%–20% with Jeffamine M600, 11%–20% with t-butanol, 15%–33% with ethylene glycol, and 28%–41% with 1,4-butanediol, consistent with previous sponge phase transition studies (Wadsten et al., 2006).

We then tested the absorption of the resulting less viscous lipid mesophase on blotting paper, in order to empirically determine how to blot these converted LCP samples to generate a thin layer sample suitable for vitrification for MicroED. In this step, samples were expelled out of the mixing syringe and deposited on the blotting paper, without external blotting force applied. Compared with the LCP droplet (Figure 1A), which retained its shape and did not blot on the filter paper, the seven additive-converted less viscous lipid mesophase samples showed absorption on the filter paper (Figures 1B–1H). MPD-converted (Figure 1B) shows the most significant blotting relative to the other additive-converted samples. When similar blotting tests were conducted on EM grids, the MPD-converted lipid mesophase samples produced the most consistently thin samples for successful transmission electron microscopy (TEM) visualization. Therefore, MPD was selected for further experiments with Proteinase K, cholesterol, and A2AAR crystals embedded in LCP.

Microcrystal Survival during LCP Conversion

We then followed the batch crystallization method to grow Proteinase K microcrystals in solution (crystal size may range between 5 and 100 \(\mu \text{m} \) as shown in Figure 2A, but only crystals <5 \(\mu \text{m} \) in size and ~0.5 \(\mu \text{m} \) thick would be targeted for MicroED data collection as in Figures 3A and 3E) and reconstituted them into LCP by dual-syringe mixing with the host lipid monolenin in a lipid:crystal solution ratio of 3:2 (v/v). Proteinase K microcrystals survived reconstitution into LCP (Figure 2B) and were used for the phase conversion test with MPD or lipase treatment.

For phase conversion, we tested MPD supplementation in the Proteinase K precipitant solution with a range of 6%–18% MPD in 0.5% increments as a phase-converting buffer. This conversion buffer was then mixed with LCP-Proteinase K in the syringe.
We observed that the converting buffer supplemented with more than 12.5% MPD resulted in fewer/no Proteinase K microcrystals or crystals with dissolved edges (crystal image not shown). Therefore, 12.5% MPD was chosen as the maximum concentration capable of reducing the viscosity of the LCP sample (Figure 1B) without dissolving the embedded Proteinase K crystals (Figure 2C).

LCP-Proteinase K samples were treated with lipase (1:1 v/v ratio) along with additional crystallization precipitant solution added as a supplement to ensure the stability of the Proteinase K crystals after release from the LCP. Lipid hydrolysis was monitored every 1 h for the first 14 h, and every 20 min afterward. After 18-h of lipase treatment, the sample composed of a 1:1:2 (v/v/v) ratio of lipase:LCP-Proteinase K:precipitant solution was completely hydrolyzed and separated into two liquid layers with the Proteinase K crystals being released from the LCP matrix into the glycerol-rich phase. We observed that the liquid phase contained crystals of similar size and density to that of Proteinase K microcrystals in the LCP-Proteinase K sample before the treatment (Figure 2D).

With these sample preparation methods, the low-viscosity LCP-microcrystal solution was applied to glow-discharged carbon-coated EM grids, blotted with filter paper, and vitrified in a method similar to that used to prepare EM grids for non-LCP-MicroED samples (Shi et al., 2016). The MPD-induced less viscous lipid mesophase sample was further diluted by adding the converting buffer in a 1:1 (v/v) ratio, which generated a thin layer on the EM grid where crystals could still be identified by UV microscopy (Figure 2E). Lipase treatment also produced grids with a similar level of microcrystals visible by UV (Figure 2F).

To further test the viability of the sample treatment strategy for crystals grown in LCP, cholesterol and the membrane protein A2AAR were crystallized in LCP and then examined using the MPD treatment method. A cholesterol- or A2AAR-laden LCP sample was crystallized in the presence of 28% PEG400 in the initial crystallization precipitant solution, which transformed the cubic phase into a less viscous intermediate phase. Once crystals formed to the size of the 2–3 μm needle shaped for cholesterol (Figure 4A) and ~5 × 5 × 2 μm^3 for A2AAR (Figure 5A), excess precipitant solution was removed, and only 7% MPD was needed to convert the LCP by syringe mixing in a gentle manner. Further dilution by adding the converting buffer was applied before depositing crystals on the EM grid. A2AAR crystals on the grids were shown to have survived the addition of 7% MPD and the deposition process via UV microscopy (Figure 5B). The diffraction quality of the A2AAR microcrystals following LCP conversion was also examined by X-ray diffraction using a microfocus beamline. These crystals retained their diffracting power to 2.4 Å resolution (Figure 5E), indicating the treatment with MPD does not significantly reduce the crystal quality.

MicroED Analysis of Converted LCP Samples

Samples prepared by the methods described above were visually analyzed using cryo-TEM to verify the thickness and the
presence of microcrystals. In all cases, regions of sample grids containing Proteinase K (Figures 3a and 3e), cholesterol (Figure 4A), or A2AAR microcrystals (Figure 5C) could be visually identified and confirmed.

In the case of Proteinase K, while both treatment strategies produced suitable samples, lipase-treated samples generally gave a thinner layer on the EM grid relative to the MPD-induced less viscous lipid mesophase samples. Standard MicroED diffraction screening, data collection, and data processing protocols (Hattne et al., 2015; Shi et al., 2016) were used to collect high-resolution datasets from each type of sample preparation. For the MPD-converted samples, diffraction data from four Proteinase K crystals were merged together to produce a final dataset with a refined structure at 2.0 Å. The $2F_o - F_c$ maps (C, MPD; G, lipase) and composite omit maps (D, MPD; H, lipase) show clear density surrounding the models. Scale bars in (A) and (E) represent 4 μm. The density maps in (C) and (G) and composite omit maps in (D) and (H) are contoured at 1.5σ and 1.0σ, respectively. The $2F_o - F_c$ map in (C) and (G) is contoured at 3.0σ (green) and −3.0σ (red).

Cholesterol microcrystals grown in LCP were converted to a less viscous phase using the same protocol involving MPD. The vitrified sample on the EM grid (Figure 4A) was diffraeted using cryo-TEM, and subsequent diffraction patterns showed well-resolved spots to high resolution (slightly beyond 1 Å) (Figure 4B). We were able to index the cholesterol datasets with a resulting P1 space group with unit cell dimensions of 12.257 Å, 12.343 Å, and 34.262 Å with angles of 89.551°, 83.497°, and 78.907° (Table 2). These values are consistent with previously published results on cholesterol structure (Craven, 1976; Varsano et al., 2018). Also, the X-ray structure of this cholesterol form (Craven, 1976) was used to calculate model amplitudes, and they compared very well with the corresponding amplitudes obtained by MicroED (CC = 84.2%). Unfortunately, because of the low symmetry of the cholesterol crystals (P1) and the preferred orientation on the grid, the completeness of the merged dataset was very low (31.1%), which prevented the use of direct methods for phasing. Due to low data completeness, a reliable structure of cholesterol could not be determined, however a projection map could be calculated. By using the X-ray model of cholesterol and molecular replacement, a projection map was generated that shows good maps when viewed along the direction containing high data completeness for the cholesterol and water molecules in the crystals (Figure 4C). This is an important step because it demonstrated that the method used for the Proteinase K samples previously could also be extended to the collection of MicroED data from crystals that had been grown in LCP.

We next applied the same MicroED data collection process to study A2AAR microcrystals and observed the diffraction to be...
about 4.5 Å (Figure 5D). Although fewer spots were found in the
diffraction patterns within a narrow tilt angle series, we were able
to collect a small tilt series that showed the unit cell parameters
are consistent with previously published A2AAR models,
including one from LCP-SFX experiments (Batyuk et al., 2016).

DISCUSSION

These results demonstrate, for the first time, that microcrystals
embedded in LCP can yield high-resolution data and structures
using MicroED. This proof-of-concept study and methodology
presented here paves the way for future LCP-MicroED applica-
tions for challenging membrane protein targets that only form mi-
cro- or nanocrystals. To expand the application of LCP-MicroED
to these difficult targets, further development and optimization
based on these initial methods need to be explored. Because
every LCP-microcrystal sample is unique, the expansion of the
method reported here into a suite of techniques will be important
for its broad applicability. For the use of additives for phase con-
version, a broader spectrum of chemicals should be investigated
for LCP-MicroED. Certain polar solvents or other additives such as
propylene glycol and pentaerythritol propoxylate, are
commonly used in membrane protein crystallization precipitant solutions and
can also be used as phase conversion ad-
ditives. The identification of a suite of ad-
ditives compatible with LCP-MicroED
would allow users to choose chemicals
already present in the crystallization pre-
cipitant solution (or components with
similar chemical properties). When
screening new additives, two critical fac-
tors—the viscosity of the chemical and
the overall percentage needed to convert
the phase—should be kept in mind. In this
study, we found that MPD behaved much
better than PEGs in microcrystal blotting
on EM grids, which was attributed to its
lower viscosity and lower concentration
(6%–18%) required for phase conversion
to a less viscous state. The intrinsic vis-
cosity is not a parameter that can be
tuned easily; however, these additives
typically have a wide range of concentra-
tions that can drive conversion to a less
viscous lipid mesophase (Wadsten et al., 2006). While screening
additives, some chemicals may affect microcrystal quality at the
concentrations required to trigger the desired phase conversion.
Therefore, for novel additives, their effects on phase conversion
and crystal quality should be carefully examined.

After phase conversion by the addition of additives, the
diffraction quality of converted microcrystal samples could be
evaluation in a microfocus X-ray beamline either with a cryogenic
frozen sample or with the equipped LCP sample injector at room
temperature in serial mode. Once the crystal diffraction quality is
confirmed, vitrified EM grids can be loaded into a scanning elec-
tron microscope to assess the distribution of blotted crystals
with the excess LCP residua prior to data collection in cryo-
TEM. Under a certain circumstance when the conversion by
additives might disrupt the crystal diffraction quality, a lower
concentration of additives in a safe range to preserve the crystal
integrity could be used to partially convert the phase to a rela-
tively lower viscosity, although not sufficient to produce a pure
conform clean MicroED grid. The thickness of the vitrified grids could
be further reduced to remove the excess LCP, generating desir-
able-sized lamellae, by cryo-focused ion beam (cryo-FIB) milling
prior to MicroED data collection (Duyvesteyn et al., 2018)
This strategy has been applied to several structure determinations by MicroED without damage to the underlying crystal lattice. Following the Proteinase K crystal diffraction data and structure determination, we crystallized, transformed the phase of, and vitrified cholesterol microcrystals grown in LCP for further MicroED data collection. The purpose of collecting cholesterol crystal diffraction is 2-fold: (1) to establish that in the A2AAR-LCP crystallization condition (containing 10% w/w cholesterol supplemented in the host lipid monoolein), the concentration of cholesterol could not crystallize, even with MPD-induced phase conversion; and (2) that very high-resolution can be obtained following LCP conversion. The cholesterol crystals diffracted to high resolution and were able to be indexed showing small unit cell dimensions, indicating that the crystals indeed were a small-molecule compound. Further, cholesterol crystallization in LCP occurred at a higher concentration (30% w/w for our samples) than that used for A2AAR-LCP crystallization, satisfying any concern that cholesterol may have crystallized and contaminated the final A2AAR crystal sample.

In this study, we present LCP-MicroED diffraction images and processed data using A2AAR microcrystals. A2AAR is a model GPCR that had been used extensively in diffraction method development and validation, particularly in cases of using LCP as a carrier medium, such as LCP-SFX (Batyuk et al., 2016) and LCP-SMX (Martin-Garcia et al., 2017). A2AAR was crystallized in LCP in a high (28%) concentration of PEG400, which resulted in average crystal sizes of 5 x 5 x 2 µm³ as previously described for LCP-SFX data collection (Batyuk et al., 2016). Due to the high concentration of PEG400, the phase of the matrix was intermediate to that of cubic and sponge, therefore we empirically determined that 7% MPD was sufficient to reduce the viscosity of the matrix further for blotting and vitrification onto EM grids. We were able to visually confirm the presence of the A2AAR crystals on the EM grids that retained the appearance and dimensionality as we had observed prior to the MPD-mediated conversion. Further, MicroED experiments recorded diffraction spots that were visible to approximately 4.5 Å (Figure 5D). The indexed unit cell dimensions were similar to previously published results, suggesting that these are A2AAR

Figure 5. A2AAR Microcrystal Monitoring and MicroED Diffraction
A2AAR was crystallized in LCP to a size of 5 x 5 x 2 µm³ (A, viewed with cross-polarized light), and microcrystals survived after LCP phase conversion by the converting buffer supplemented with 7% MPD (B, viewed with UV). Microcrystals were located on the EM grids (C) and a still initial electron diffraction pattern with resolution ring of 4.5 Å (D) was recorded before the continuous-rotation MicroED data collection in cryo-TEM. Red arrows denote the diffracted spots to 4.5 Å in a closer view of the black boxed area. (E) A2AAR microcrystals, treated with the same phase conversion method, retained their diffraction power to ~2.4 Å resolution (shown as the resolution ring in the image) at a microfocus X-ray beamline (diffracted spots to the highest resolution were denoted by red arrows in a closer view of the black boxed area).
diffraction patterns because no other protein crystals were blotted onto the grids at the time of experiment (with the exception of Proteinase K), and no other components of the LCP matrix could have possibly diffracted with such unit cell parameters.

The microfocus X-ray diffraction data show that the A2AAR crystals diffract well even after undergoing the treatment described here, whereas when analyzed by MicroED, the diffraction only extended to 4.5 Å. This suggests that the weaker diffraction seen by MicroED is not a result of the sample processing procedures, but rather due to other factors. The most likely reason for the reduced diffraction is because of the thickness and shape of the A2AAR crystals. MicroED requires the crystals to be thin (on the order of a few hundred nanometers) for the electron beam to penetrate and produce reliable diffraction data. When the crystals are thicker than 1 μm, as is the case for the A2AAR crystals in this study, much of the beam is absorbed by the sample. In addition, while not a problem for Proteinase K, excess LCP surrounding the A2AAR crystals could also increase the absorption of the electron beam. In the case of A2AAR, the average crystal size seen is approximately 5 × 5 × 2 μm³, which is too thick, and as the crystals become smaller, the ratio of length and width to thickness remains relatively consistent. For crystals on the grid that are thin enough for MicroED, the length and width are also greatly reduced, and therefore the total number of unit cells in the electron beam is low. As described above, the use of cryo-FIB milling offers a solution to this problem, where the larger and thicker crystals could be milled leaving thin lamella that still had a reasonable area for diffraction. Cryo-FIB milling alone is not sufficient for preparing samples from LCP because the LCP matrix would still be too thick to process by cryo-FIB. Therefore, protocols such as those presented in this work would still be required as upstream sample preparation prior to further sample processing by cryo-FIB. We expect that in future work, A2AAR microcrystals will be the model system used to further optimize MicroED data collection for LCP-embedded membrane proteins by streamlining the mesophase conversion and vitrification process, with higher throughput diffraction experiments using the TEM, as well as in data collection and processing.

Because lipase hydrolyzes the lipids that make up the LCP matrix, lipase treatment generally provided thinner vitrified samples relative to MPD treatment, thereby increasing the area that was visible in the EM. It has been previously shown that lipase treatment of bacteriorhodopsin crystals could be performed without degrading the crystals (Belrhali et al., 1999). In the case of some membrane protein crystallization, lipid molecules may interact with membrane proteins and mediate protein crystal packing (Hanson et al., 2008; Liu et al., 2012), and the lipase hydrolysis treatment method may cause deleterious effects to the target membrane protein crystals. Therefore, lipase treatment should be evaluated extensively for different membrane protein targets prior to LCP-MicroED studies.

The combination of the extraordinary properties of LCP and MicroED promises to facilitate the determination of high-
Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead Contact
 - Materials Availability
 - Data and Code Availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Microcrystal Sample Preparation
 - LCP Microcrystal Sample Conversion Set-Up
 - MicroED Grid Preparation and Data Collection
 - Data Processing and Structure Determination
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

Acknowledgments

We would like to acknowledge the use of the Titan Krios at the Ewing Materials Center at Arizona State University and the funding of this instrument by NSF MRI 1531991. This work was supported by the Center for Applied Structural Discovery (CASD) at the Biodiscovery Institute at Arizona State University (L.Z., G.B., L.J., M.-Y.L., W.L., and B.L.N.), a Mayo Clinic ASU Collaborative Seed Grant Award (L.W.), the Flinn Foundation Seed Grant (W.L.), the STC Program at Arizona State University and the funding of this instrument by NSF MRI 1531991. This work was supported by the Center for Applied Structural Discovery (CASD) at the Biodesign Institute at Arizona State University (L.Z., L.J.).

Author Contributions

L.Z., W.L., and B.L.N designed the experiments and protocols. L.Z., G.B., and L.J. grew crystals and prepared samples for data collection. G.B., D.S., M.-Y.L., T.G., and B.L.N. participated in data collection and data analysis. L.Z. and B.L.N. prepared the figures and tables for the manuscript. L.Z., W.L., and B.L.N. wrote the manuscript with contributions from all authors. All authors read and approved the final manuscript.

Declaration of Interests

The authors declare no competing interests.

References

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoclonal ANTI-FLAG M2-FITC antibody</td>
<td>Sigma</td>
<td>Cat# F4049; RRID: AB_439701</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Shot™ TOP10 Competent E.coli</td>
<td>Invitrogen</td>
<td>Cat# C404010</td>
</tr>
<tr>
<td>MAX Efficiency™ DH10Bac Competent Cells</td>
<td>Invitrogen</td>
<td>Cat# 10361012</td>
</tr>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteinase K from Triticum album</td>
<td>Sigma</td>
<td>Cat# P2308</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDM (N-Dodecyl-B-D-Maltoside)</td>
<td>Anatrace</td>
<td>Cat# D310</td>
</tr>
<tr>
<td>EDTA-free complete protease inhibitor cocktail tablets</td>
<td>Roche</td>
<td>Cat# 5056489001</td>
</tr>
<tr>
<td>ZM241385</td>
<td>Tocris</td>
<td>Cat# 1036</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>Sigma</td>
<td>Cat# A7030</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Sigma</td>
<td>Cat# C8667</td>
</tr>
<tr>
<td>CHS (Cholesteryl hemisuccinate)</td>
<td>Sigma</td>
<td>Cat# C6512</td>
</tr>
<tr>
<td>Iodoacetamide</td>
<td>Sigma</td>
<td>Cat# I1149</td>
</tr>
<tr>
<td>Lipase from Candida rugosa</td>
<td>Sigma</td>
<td>Cat# L1754</td>
</tr>
<tr>
<td>Monoolein (1-Oleoyl-rac-glycerol)</td>
<td>Sigma</td>
<td>Cat# M7765</td>
</tr>
<tr>
<td>Additive Screen</td>
<td>Hampton Research</td>
<td>Cat# HR2-428</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>Hampton Research</td>
<td>Cat# HR2-621</td>
</tr>
<tr>
<td>Jeffamine M-600</td>
<td>Hampton Research</td>
<td>Cat# HR2-501</td>
</tr>
<tr>
<td>Polyethylene glycol 200</td>
<td>Hampton Research</td>
<td>Cat# HR2-601</td>
</tr>
<tr>
<td>Polyethylene glycol 400</td>
<td>Hampton Research</td>
<td>Cat# HR2-603</td>
</tr>
<tr>
<td>(+/-)-2-Methyl-2,4-pentanediol</td>
<td>Hampton Research</td>
<td>Cat# HR2-627</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TALON Metal Affinity Resin</td>
<td>Clotech</td>
<td>Cat# 635507</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK-MPD</td>
<td>PDB, This Study</td>
<td>PDB: 6PQ0</td>
</tr>
<tr>
<td>PK-Lipase</td>
<td>PDB, This Study</td>
<td>PDB: 6PQ4</td>
</tr>
<tr>
<td>PK-Molecular replacement model</td>
<td>PDB, (Wang et al., 2006)</td>
<td>PDB: 2ID8</td>
</tr>
<tr>
<td>Cholesterol model</td>
<td>CCDC, (Craven, 1976)</td>
<td>1124488</td>
</tr>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spodoptera frugiperda (Sf9) insect cells</td>
<td>Invitrogen</td>
<td>Cat# 11496-015</td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human A2AR cloned into the expression vector pFastBac1</td>
<td>GenScript</td>
<td>N/A</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iMOSFLM</td>
<td>(Battye et al., 2011)</td>
<td>https://www.mrc-lmb.cam.ac.uk/harry/imosflm/ver730/introduction.html</td>
</tr>
<tr>
<td>AIMLESS</td>
<td>(Evans and Murshudov, 2013a)</td>
<td>http://www.ccp4.ac.uk/html/aimless.html</td>
</tr>
<tr>
<td>Phaser</td>
<td>(McCoy et al., 2007)</td>
<td>https://www.phenix-online.org/</td>
</tr>
<tr>
<td>COOT</td>
<td>(Emsley and Cowtan, 2004)</td>
<td>https://www2.mrc-lmb.cam.ac.uk/personal/phenix/coot/</td>
</tr>
<tr>
<td>PHENIX</td>
<td>(Afonine et al., 2012)</td>
<td>https://www.phenix-online.org/</td>
</tr>
</tbody>
</table>

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Brent L. Nannenga (Brent.Nannenga@asu.edu)

Materials Availability
Further information and requests for resources and reagents may be directed to and will be fulfilled by the Lead Contact, Brent L. Nannenga. All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
This study did not generate new software. Details of deposited coordinates and density are provided in the Key Resources Table. Coordinates and structure factors were deposited in the Protein Data Bank (PDB) under the accession code PDB: 6PQ0 and PDB: 6PQ4.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A2AAR proteins were expressed and purified from baculovirus infected *Spodoptera frugiperda* (Sf9) insect cells, grown in ESF-921™ serum-free, protein-free insect cell medium (Expression Systems) at 27°C for 2 days.

METHOD DETAILS

Microcrystal Sample Preparation
Proteinase K (catalog no. P2308, Sigma) was crystallized using batch crystallization method by mixing equal volumes of proteinase K solution at 40 mg/mL in 0.02 M MES pH 6.5 and a precipitant solution composed of 0.1 M MES pH 6.5, 0.5 M sodium nitrate, 0.1 M calcium chloride. Proteinase K microcrystals appeared after 20 min incubation at 20 °C (Martin-Garcia et al., 2017). Microcrystals were pelleted by centrifugation at 500 g for 5 min, resuspended in the crystallization buffer, and then reconstituted into LCP by mixing with molten monoolein host lipid (catalog no. M7765, Sigma) in a lipid:solution ratio of 3:2 (v:v) using a dual-syringe mixer until a homogeneous and transparent LCP was formed (Caffrey and Cherezov, 2009).

The mixture of cholesterol (catalog no. CH200, Anatrace) and monoolein in a ratio of 3:7 (w/w) was co-dissolved in chloroform, and solvent was removed by evaporation under a stream of an inert gas followed by high vacuum drying at RT for 24 hours. Cholesterol was reconstituted into LCP by mixing of the premixture with water in a ratio of 3:2 (v:v) and injected into a syringe containing the precipitant solution same as A2AAR crystallization. Cholesterol crystals formed in LCP stream after 18 hours incubation at RT.

A2AAR was expressed, purified, and crystallized as described before (Batyuk et al., 2016; Liu et al., 2012, 2014). In brief, the A2AAR construct containing the BRIL fusion protein in intracellular loop 3 (A2AAR-BRIL) was subcloned into the pFastBac1 vector and transformed into One Shot™ TOP10 competent *E.coli* cells. Recombinant A2AAR bacmid DNA was prepared by transforming MAX Efficiency™ DH10Bac competent cells, followed by transfection of Sf9 cells to generate A2AAR baculoviruses. Sf9 cells were grown to 2 x 10⁶ cells per mL before A2AAR baculovirus was added for infection. A2AAR was expressed in Sf9 cells for 48 hours at 27°C after infection, and cells were harvested by centrifugation and stored at -80°C until purification. Once the protein was purified and concentrated to approximately 25 mg/mL, A2AAR was reconstituted into LCP by mixing with molten monoolein, containing 40% (w/w) protein solution, 54% (w/w) monoolein and 6% (w/w) cholesterol. The protein-laden LCP were then injected into Hamilton gas-tight syringes containing precipitant solution composed of 28% (v/v) PEG400, 40 mM sodium thiocyanate, and 100 mM sodium citrate pH 5.0. A2AAR microcrystals formed in LCP stream after 24 hours incubation at 20°C. Upon further inspection, the A2AAR microcrystals appear comparable to previously crystallized samples (Batyuk et al., 2016; Martin-Garcia et al., 2017) in different microscopy imaging modes (Figure 5A).
LCP Microcrystal Sample Conversion Set-Up
Proteinase K microcrystals embedded in LCP were then either converted by mixing with additives to achieve a less viscous lipid mesophase or subjected to lipase treatment to separate into two immiscible liquid phases.

LCP-proteinase K crystal sample conversion was tested with seven additives, MPD, PEG200, PEG400, jeffamine M600, t-butanol, ethylene glycol, and 1,4-butanediol. Sample conversion was performed by syringe mixing 15-20 times of an LCP embedded proteinase K sample in one syringe and the conversion buffer in the other syringe. The conversion buffer was made from the initial crystallization buffer supplemented with each of different additives. Each conversion buffer was optimized with a gradient additive concentration series of 10% increments. Finer additive concentration optimization followed when an initial point was identified that was capable of converting the LCP phase to a less viscous lipid mesophase. Once the concentration range of supplemented additive was identified, EM grid blotting experiments were conducted to investigate the capability of the additives for producing quality MicroED samples. Among those seven additives, only MPD-induced less viscous lipid mesophase sample exhibited reproducibly good quality EM grids. MPD was then focused for further optimization to ensure crystal survival during phase conversion. Once the LCP phase was converted, LCP-microcrystal samples were transferred into a microcentrifuge tube. Crystals were centrifuged and harvested from the bottom of the tube by pipetting. These samples were applied to a glass slide to monitor crystal survival by light microscopy with cross-polarized and UV light, or deposited on EM grid for analysis in the cryo-TEM.

In the case of lipase treatment, LCP-proteinase K microcrystal samples were expelled from the LCP mixing syringe into a 0.2 mL microcentrifuge tube, followed by the addition of freshly prepared lipase solution at a volume ratio of 1:1:2 (lipase solution:LCP:crystallization buffer) directly into the same tube without mixing. The lipase used is from Candida rugosa (catalog no. L1754, Sigma) and is prepared at a concentration of 50 mg/mL in saturated K phosphate buffer. Incubation for at least 18 hours converts the lipidic cubic phase into a two-phase system consisting of two immiscible liquids: water/glycerol and oleic acid. Proteinase K crystals partitioned into the glycerol/water phase.

Once A2AAR microcrystals formed in LCP stream, excess precipitant solution was removed from syringe and the LCP-A2AAR crystal sample was directly used for MicroED sample preparation. LCP-A2AAR crystal sample conversion was tested with four additives, MPD, jeffamine M600, PEG200, and PEG400, by syringe mixing 3-5 times very gently with conversion buffer in the other syringe. Same as the conversion test of proteinase K, only MPD-treatment produced good quality EM grids with clear and thin window visualized in TEM. The conversion buffer was made from the initial crystallization buffer supplemented with 7% MPD. After syringe mixing of LCP-A2AAR crystals with conversion buffer, sample was incubated at 20 °C for 10 min allowing the MPD better diffusing in the LCP matrix. Once the LCP phase was converted, no further dilution with conversion buffer was required for A2AAR sample. X-ray crystallographic data on converted A2AAR samples were collected on the 23ID-D beamline (GM/CA) of the Advanced Photon Source at the Argonne National Laboratory using a 5 um minibeam collimator following previous protocols (Liu et al., 2012).

LCP-cholesterol crystal samples were converted with MPD treatment, following the same setup as stated above for A2AAR.

MicroED Grid Preparation and Data Collection
After MPD or lipase treatment, proteinase K microcrystals were collected by centrifugation at 500 g for 5 min. Crystal solution was then harvested by pipetting from the microfuge tube bottom into a fresh microfuge tube. For MPD samples, the crystal solution was further diluted by adding a 1:1 ratio of fresh precipitant solution supplemented with 12.5% MPD. Cholesterol and A2AAR microcrystals were directly applied to a glass slide to monitor crystal survival by light microscopy with cross-polarized and UV light, or deposited on EM grid for analysis in the cryo-TEM. The selected area aperture of the TEM was used to limit the area for single crystal from which data were collected.

Cryo-TEM samples were prepared by standard MicroED sample preparation procedures (Shi et al., 2016). Briefly, 2 µL of crystal solution was deposited on each side of a glow-discharged holey carbon EM grid (Quantifoil 2/4 for proteinase K crystals and cholesterol crystals, Quantifoil Multi A for A2AAR crystals), and the grid was processed with a Vitrobot Mark IV (Thermo Fisher) by blotting for 12-16 s followed by vitrification by plunging into liquid ethane. Sample preparation was optimized and screened in high-throughput fashion using a Titan Krios with CETA CMOS detector (Thermo Fisher). MicroED data collection of proteinase K was performed by standard methods (Shi et al., 2016) using a FEI TF20 cryo-TEM equipped with a F416 CMOS detector (TVIPS), operated at 200 kV. Diffraction data sets were collected as the stage was continuously rotated at a rate of ~0.09 °/s and the detector collected frames every 4 s at a dosage of approximately 0.01 e⁻/Å² per second. Data sets covered approximately a 45°, for a total dose of no more than ~5 e⁻/Å² per data set. A2AAR and cholesterol data collection were performed using a Titan Krios with CETA CMOS detector, operated at 300 kV, with continuously rotation at a rate of ~0.09 °/s and 0.91 °/s and the detector collected frames every 8 s and 2 s for A2AAR and cholesterol crystals, respectively. Data sets from A2AAR were collected to cover ~20° wedge, and those from cholesterol were collected to cover ~45°. The selected area aperture of the TEM was used to limit the area for single crystal from which data were collected.

Data Processing and Structure Determination
MicroED data collected from MPD and lipase treated LCP-proteinase K microcrystals were indexed and integrated in IMOSFILM (Battye et al., 2011). For each treatment, data from multiple crystals (4 for MPD-treated and 2 for lipase-treated) were merged and scaled in AIMLESS (Evans and Murshudov, 2013b) to create merged data sets with high completeness. Phaser (McCoy et al., 2007) was used to perform molecular replacement using a Proteinase K model (PDB ID: 2ID8, (Wang et al., 2006)). The molecular replacement solution was refined using phenix.reine (Afonine et al., 2012) using electron scattering factors, followed by manual inspection of the model in Coot (Emsley and Cowtan, 2004; Emsley et al., 2010). This process is then repeated iteratively with attention paid to avoid phase bias from the initial Proteinase K molecular replacement template (2ID8).
A2AR diffraction data were recorded as movie files of continuous tilt series. The images were extracted from the movie files first using the script mrc2tif from the IMOD software package (Kremer et al., 1996; Mastronarde, 2008) followed by the script tiff2smv from the TVIPS tools software suite (Hattne et al., 2015) to generate images in formats that can be processed by standard X-ray diffraction processing software. Cholesterol datasets were converted using similar conversion tools (Hattne et al., 2019). XDSGUI (Kabsch, 2010) was used for subsequent spot picking, indexing, integration, and scaling of the diffraction data. Cholesterol data from two crystals were merged using AIMLESS, and a previous model of cholesterol (CSD Entry: CHOLES20) was used to phase the diffraction data with Phaser.

QUANTIFICATION AND STATISTICAL ANALYSIS

Reported crystallographic statistics were calculated using the crystallographic data processing programs as described in the methods, and these values are reported in the crystallographic tables (Tables 1 and 2).